
The Next Generation Challenge for Software
Defined Radio

Mark Woh1, Sangwon Seo1, Hyunseok Lee1, Yuan Lin1, Scott Mahlke1,
Trevor Mudge1, Chaitali Chakrabarti2, and Krisztian Flautner3

1 University of Michigan - Ann Arbor, Ann Arbor MI, USA
2 Arizona State University, Tempe, AZ, USA

3 ARM Ltd., Cambridge, UK

Abstract. Wireless communication for mobile terminals has been a high
performance computing challenge. It requires almost super computer per-
formance while consuming very little power. This requirement is being
made even more challenging with the move to Fourth Generation (4G)
wireless communication. It is projected that by 2010, 4G will be available
with data rates from 100Mbps to 1Gbps. These data rates are orders of
magnitude greater than current 3G technology and, consequently, will
require orders of magnitude more computation power. Leading forerun-
ners for this technology are protocols like 802.16e (mobile WiMAX) and
3GPP LTE.

This paper presents an analysis of the major algorithms that comprise
these 4G technologies and describes their computational characteristics.
We identify the major bottlenecks that need to be overcome in order to
meet the requirements of this new technology. In particular, we show that
technology scaling alone of current Software Defined Radio architectures
will not be able to meet these requirements. Finally, we will discuss
techniques that may make it possible to meet the power/performance
requirements without giving up programmability.

1 Introduction

The Third Generation Wireless age (3G) has provided an increase in data rate
to the user which allows them to experience more than just voice over the air.
Fourth Generation (4G) wireless networks is aimed at increasing that data rate
by an order of magnitude in order to allow for users to experience richer con-
tent and get true mobility, freeing themselves from the need for wires or WiFi
networks. The International Telecommunications Union (ITU) released a recom-
mendation ITU-R M.1645 which sets data rate goals for 4G. They proposed a
maximum data rate of 100Mbps for high mobility situations and 1Gbps for sta-
tionary and low mobility situations like hot spots. These targets are being used
by most research on 4G today. It is also envisioned that 4G will include earlier
standards and their protocols, and that they will work harmoniously together.
SDR solutions can help reduce the cost of systems, which are required to support
such a wide range of existing wireless technologies.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 343–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

344 M. Woh et al.

Fig. 1. The physical layer for a 4G terminal

Previous papers have characterized the computational requirments of 3G [1].
There have been several proposals for SDR architectures capable of support-
ing 3G W-CDMA and 802.11 physical layers. Examples are Sandbridge’s Sand-
blaster [2] and SODA [3]. But these architectures are not able to handle the
almost 10-1000x increase in throughput required for 4G systems. This paper
outlines the 4G physical layer. The aim is to show the requirements that are
needed to process the new 4G physical layer and also to identify computational
patterns that might suggest an architecture that can support 4G.

The 4G system we will study is based on orthogonal frequency division multi-
plexing (OFDM) that uses a 1024-point FFT/IFFT, a 4x4 16QAM multiple input
multiple output (MIMO) antenna system, and a low density parity (LDPC) en-
coder and decoder. Detailed analysis of the major algorithms that make up these
components and their computational characteristics show the following repeated
computational pattern: load data from a memory element (initially this is the re-
ceived data), permuting that data, performing one or two ALU operations, and
storing the processed data back to memory. These patterns are similar to those
found in 3G kernels. The architectures that are designed to support them, such
as SODA, will not be able to meet the 4G requirements through technology scal-
ing alone. As we will show, other techniques will have to be enlisted such as wider
SIMD engines, special purpose functional units, and special memory systems.

This paper is organized as follows. In the next section, we begin by present-
ing a simplified 4G system and by describing some of major kernels: an OFDM
modulator/demodulator, a MIMO modulator/demodulator, and a channel de-
coder for LDPC. In section 3, we give a brief overview of SODA and use it as a
baseline to identify the dominate workload profiles and common computational
patterns of the kernels. In section 4, we present programmable hardware support
for implementing these kernels efficiently to meet the high throughput required
for 4G. The summary and concluding remarks are given in section 5.

2 4G Physical Layer

Figure 1 shows a 4G wireless terminal. Like other wireless communication sys-
tem, its major blocks are a channel encoder/decoder and a modulator/
demodulator. The role of the channel encoder is forward error correction that
enables receivers to correct errors without retransmission. Modulation maps in-
put data sequence onto signal waveforms which are specifically designed for the
wireless channel. Demodulation estimates the transmitted data sequence from

The Next Generation Challenge for Software Defined Radio 345

(a) Data movement patterns
(b) Computation patterns

Fig. 2. The data movement of an 8 point FFT and the computations in a 2 point FFT

the received waveform, which have been corrupted by noise and interference
when they traversed the wireless channel.

In order to satisfy the gigabit level throughput requirement, 4G systems em-
ploy three techniques not found together in 3G: 1) orthogonal frequency division
multiple access (OFDMA); 2) MIMO to support multiple antennas; and 3) LDPC
codes for the channel encoder/decoder.

2.1 OFDMA

OFDMA is a modulation scheme which transmits input signals over multiple
narrow sub-channels. Both modulation and demodulation in OFDMA systems
can be implemented with fast fourier transforms (FFT). Although additional
synchronization procedures are required in OFDMA receivers, we can ignore
them because their contribution is small.

FFT. As shown in Figure 1, the transmitter uses an inverse FFT (IFFT) for
modulation and the receiver uses an FFT for demodulation. Because FFT and
IFFT are almost identical, we will just analyze the FFT.

The FFT operation consists of a data movement followed by multiplication
and addition on a complex number. If we assume an N point FFT, it consists of
log2 N stages. As an example, Figure 2.1 shows the data movement pattern of
an 8 point FFT. It consists of 3 stages. Each stage shows a different but regular
data movement pattern. The operation of each stage can be divided into several
2 point FFT operation as depicted in Figure 2.1.

The FFT allows wide data level parallelism because all 2 point FFT operations
required for proceeding from one stage to the next can be done in parallel. It
is important to exploit this type of data level parallelism to meet power and
performance requirements of 4G system, because the FFT width of 4G systems
can be as large as 2048.

2.2 MIMO

MIMO is a technique that uses multiple antennas both for the transmission
and reception. It can be used for two purposes: signal quality enhancement by

346 M. Woh et al.

Time
slot, T

Antenna
Tx 1 Tx 2

1

2

x1 x2

-x2* x1*

(a) Transmission Matrix—the * in-
dicates complex conjugate.

Complex
Conjugate Negation

Complex
Conjugate

Antenna 2

Antenna 1
x[0]

x[1]

x[0]

x[1]

y[0]

y[1]

y[0]

y[1]

(b) Computation patterns of an STBC encoder

Complex
Multiply Accumulate

Channel
Estimation

H2[1], H1[1], H2[0], H1[0]

Y*1[1], Y1[0]

Y*2[1], Y2[0]

Receiver Antenna 1 and 2

X[1], X[0]

Conjugate
+Negation

(c) Computation pattern of an STBC decoder

Fig. 3. Transmission code matrix and computation patterns of the Alamouti 2x2 STBC

transmitting identical signal through multiple antennas and channel capacity
enhancement by transmitting different signals on multiple antennas. Space time
block codes (STBC) is a popular MIMO technique for the signal quality en-
hancement and the vertical Bell Laboratories layered space-time (V-BLAST)
technique is popular for channel capacity enhancement.

STBC. This is used to increase the signal quality by transmitting the same
signal multiple times through different antennas. Signal quality is increased by
receiving those redundant copies of the same signal and using the information
from each receiver to optimally combine them to produce a better signal. The
implementation we used is based on Alamouti’s 2x2 scheme [4], which uses 2
transmit and 2 receive antennas.

STBC Encoder. The encoder orders and transmits data based on the transmis-
sion matrix shown in figure 3(a). The operation consists of transmitting two
different symbols at the first time instance, then transmitting the conjugate of
the same two symbols with antennas switched (see the matrix in figure 3(a)).
Figure 3(b) shows the computation needed to perform this operation. First the
data is sent to each modulator and then the conjugate and negation are per-
formed. This corresponds to a simple predication operation to obtain the real
and imaginary values. This is highly parallelizable, and a 1024 point FFT could
be run in parallel on a 1024 wide SIMD (Single Instruction, Multiple Data)
processor.

STBC Decoder. The decoder takes the transmitted data from both time in-
stances and combines them together to create the original two symbols. The

The Next Generation Challenge for Software Defined Radio 347

decoder operation consists of performing complex multiplications between each
of the received signals and the channel estimation for each antenna and then
summing the values. Figure 3(c) shows this operation pattern. Calculating both
symbols can be done at the same time with the least amount of data move-
ment. Once again, because subcarriers are totally independent, this algorithm is
highly data parallel, and a 1024 point FFT could be run in parallel on a 1024
wide SIMD.

V-BLAST. This is one of the spatial multiplexing schemes that improves mul-
tiplexing gain by transmitting independent data streams over different antennas.
This technique combines multipath signals to obtains higher data rate compared
to STBC. The V-BLAST algorithm that was used was based on work from [5]
which reduces the computational complexity of V-BLAST.

V-BLAST encoder. The V-BLAST encoder is similar to the STBC encoder. It
also uses a transmission matrix to decide ordering, conjugating and negating for
a block of data. Therefore, the pattern of required operations is: load the real and
imaginary received data, permute the data based on the transmission matrix,
then negate and store the result before sending it to the OFDM modulators
associated with the multiple antennas. The computation pattern would be the
same as figure 3(b) except the matrix for V-BLAST is 4x4.

V-BLAST decoder. The decoding process of V-BLAST consists of two major
steps: channel estimation and signal detection. The channel matrix is estimated
based on pre-defined training symbols. The operations for channel estimation are
relatively simple with shift and sign-change operations. Once the channel matrix
has been estimated, the detection order is determined. The detection order is
based on signal strength found among all the signals received. The strongest
signal is selected and extracted from the received signal. This process is repeated
for the remaining signals. This process is iterative and is referred to as successive
interference cancelation. The signal detecting operations can be described by the
following steps: 1) load the received signal; 2) vector multiplication for obtaining
the stongest signal; 3) vector multiplication and subtraction for canceling the
strongest signal; and 4) repeat.

2.3 Channel Encoder/Decoder

4G systems are expected to use both Turbo codes and LDPC codes as channel
coding schemes. We limit our discussion to the characteristics of the LDPC codes
in this section, because Turbo codes have already been used in 3G systems and
their characteristics have been well documented elsewhere [6] [7].

LDPC. Figure 1 shows the channel encoder and decoder for LDPC. It is cur-
rently used in IEEE 802.16e and 802.11n. The encoder for LDPC is trivial in
the sense that for each LDPC code there are a set of codewords available. For

348 M. Woh et al.

L0 L1 L2 L3 L4 L5 L6 L7

E0 E1 E2 E3

Bit Nodes

Check Nodes

L0,0

E0,0 E3,0 E6,0 E7,0

(a) Graphical representation of LDPC code

(b) LDPC decoding in 4 steps

Fig. 4. LDPC graphical representation and decoding operations

different data rates there are different number of codewords. In order to trans-
mit data a codeword is picked and sent through the transmitter. Because the
operation is fairly simple we will only discuss the LDPC decoding operation.

Decoding is based on an architecturally aware design for LDPC codes given
in [8]. The code rates and the block sizes used were based on the IEEE 802.16e
standard [9] and picked in order to meet the 100Mbps and 1Gbps target data rate.

The graphical representation of LDPC is shown in figure 4(a). The check
nodes represents the number of rows in the parity check code and the bit nodes
represent the number of columns. The edges connecting the check nodes and bit
nodes are the 1’s in the parity check code matrix—all other values are 0. The
LDPC decoding operation is broken down into 4 stages as shown in figure 4(b).
These four stages are the Initialization, Bit Node, Check Node, and Bit Update
operation. This implementation is based on the Min-Sum algorithm.

The major operation in the implementation of LDPC is to first load the Ln

and En,m values. The next step is to permute the Ln’s so they align with the
En,m values. Then it is possible to compute Ln,m by performing an subtraction.
Finally we do a compare and select to find the first and second minimum. This
operation performs the Bit Node operation and the Check Node operation. The
Bit Update operation first loads the Ln, then it does a comparison to determine
whether the location of the minimum En,m is the same as the Ln position. If it is
not, then it will use the first minimum as the minimum En,m. Otherwise it will
use the second minimum. Finally, it adds the new En,m value to Ln , updating
the Ln value. This operation is done for each block row of the code. After all
block rows have been updated an iteration is complete.

LDPC exhibits considerable data level parallelism. For each En,m we process
one Ln at a time. Potentially we can do an N SIMD wide operation for the Bit
Node and Check Node operation where N is the number of Check Nodes.

3 Computational Analysis

3.1 Baseline Architecture

In order to calculate the workload characteristic we took an existing architecture
for 3G and programmed the 4G algorithms onto it. The architecture we used is

The Next Generation Challenge for Software Defined Radio 349

512-bit

SIMD

Reg.

File

E

X

512-bit

SIMD

ALU+

Mult

SIMD

Shuffle

Net-

work

(SSN)

W

B

Scalar

ALU

W

B

E

X

Scalar

RF

Local

SIMD

Memory

Local

Scalar

Memory

S

T

V

AGU

RF
E

X

W

B
AGU
ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V

T
S

Pred.

Regs

W

B

SIMD

to

Scalar

(VtoS)ALU

RF

DMA

SODA

PE

5. DMA

3. Local

memory

Local

Memories
Execution

Unit

In
te

rc
o

n
n

e
c
t

B
u

s

Global

Scratchpad

Memory

Control

Processor

SODA System

To

System

Bus

PE

Local

Memories
Execution

Unit

PE

Local

Memories
Execution

Unit

PE

Fig. 5. SODA Architecture for SDR

SODA. The SODA multiprocessor architecture is shown in Figure 5. It consists
of multiple processing elements (PEs), a scalar control processor, and global
scratchpad memory, all connected through a shared bus. Each SODA PE consists
of 5 major components: 1) an SIMD pipeline for supporting vector operations;
2) a scalar pipeline for sequential operations; 3) two local scratchpad memories
for the SIMD pipeline and the scalar pipeline; 4) an AGU (address generation
unit) pipeline for providing the addresses for local memory access; and 5) a
programmable DMA unit to transfer data between memories and interface with
the outside system. The SIMD pipeline, scalar pipeline and the AGU pipeline
execute in VLIW-styled lock-step, controlled with one program counter.

The SIMD pipeline consists of a 32-way 16-bit datapath, with 32 arithmetic
units working in lock-step. It is designed to handle computationally intensive
DSP algorithms. Each datapath includes a 2 read-port, 1 write-port 16 entry reg-
ister file, and one 16-bit ALU with multiplier. The multiplier takes two execution
cycles when running at the targeted 400MHZ. Intra-processor data movements
are supported through the SSN (SIMD Shuffle Network). The SIMD pipeline can
also take one of its source operands from the scalar pipeline. There are also sev-
eral SIMD reduction operations that are supported, including vector summation,
finding the minimum and the maximum.

3.2 Workload Profile

The breakdown of the major algorithms in our 4G protocol is listed in table 1.
This analysis is based on the algorithms as they would be programmed for the
SODA architecture. We calculated the number of cycles per second needed to
support the data rate shown. Referring back to the system diagram in figure 1:
for the 100Mbps rate we assume the STBC algorithm based on the Alamouti
scheme which uses 2 transmit and 2 receive paths; and for the 1Gbps rate we
assume a 4 transmitter and 4 receiver multiplexing diversity scheme based on V-
BLAST. In the STBC algorithm we require that each receiver performs one FFT
but only one STBC decoder for all the receivers. Each receiver is independent

350 M. Woh et al.

Table 1. Cycle Count of Major 4G Kernels on SODA

Algorithm Name
100Mbps Data Rate 1Gbps Data Rate

MCycle/s MCycle/s
FFT 360 360
IFFT 360 360
STBC 240 -
V-BLAST - 1900
LDPC 7700 18500

Table 2. Computational Pattern of 4G algorithms

Algorithm Name Load Permute First ALU Op Secondary Op Store

FFT X X X X
IFFT X X X X
STBC X X X X X
V-BLAST X X X X X
LDPC X X X X X

of the other’s operation so both FFTs can run on separate processors. For the
multiplexing diversity scheme each receiver processes separate data. That means
that for the 1Gbps data rate we have 4 independent streams of 250Mbps being
processed, but still only one V-BLAST decoder has to be performed.

From the table we can see that the channel coding algorithm is the dominate
workload. Assuming we were processing each multiplexing diversity stream on
one processor it would require us to run SODA at more than 10GHz for the
100Mbps case and almost 30Ghz for the 1Gbps case. An alternative approach
would be to have one processor for each kernel. This would mean we would
need the maximum frequency of SODA to be 8GHZ and 20Ghz for the 100Mbps
and 1Gbps cases respectively. Though it may seem that the FFT, IFFT, STBC
and V-BLAST algorithms are somewhat negligible compared to the channel
coding we should not forget that the workload of channel coding is related to
the data rate. As the data rate decreases the workload of the channel coding also
decreases but the other kernels do not. At low data rates the other algorithms
become comparable in cycle count and the optimization for these algorithms will
then be key to an efficient design.

3.3 Computational Patterns

Analysis of each algorithm reveals that there is a consistent computational pat-
tern. Table 2 shows each kernel’s inner loop broken down into simpler operations.
The pattern of loading the received data, permuting the data, performing an
ALU operation, then a secondary ALU operation and finally storing the result
back is very common to all the algorithms. These patterns make up the majority
of the cycle time and are repeated for all the data being streamed in.

The Next Generation Challenge for Software Defined Radio 351

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

180nm 130nm 90nm 65nm 45nm 32nm 22nm

F
re

qu
en

cy
 (

M
hz

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ow

er
 (

W
)

Scaled Frequency Scaled Power

(a) Technology Scaled SODA

180nm 130nm 90nm 65nm 45nm 32nm 22nm

1.8 1.3 1.1 1.1 1 0.9 0.8

Technology
Node

Vdd (V)

(b) Vdd Voltage Scaling

Fig. 6. Technology scaling from 180nm to 22nm with respect to Frequency, Power,
Vdd on SODA for 4G

Another point to the note is that the data is streamed through the operations.
Once the data is consumed we do not refer back to it until the next iteration,
or a summation, or a max/min is performed. Often sequences of operations
are performed before having to store results. This suggests that there is little
temporal locality of the data. Once the data is consumed we do not expect it to
be used again. This is true for most DSP applications [10].

Data alignment is a key problem in each of the algorithms. Each algorithm
has to align data before any computation can be performed. In the SODA ar-
chitecture we use the SSN which includes a perfect shuffle network to perform
this operation.

4 Architectural Implications

The frequency that the SODA processor would need to operate at in order to
processes 4G was estimated at 20Ghz. Based on data from the ITRS roadmap
[11] and [12] we show in figure 6(a) that technology scaling will still leave us a
factor of 3x behind in frequency for a given power budget at 22nm. The power
budget was set at 3W/mm2 combined for all cores. It is set by limitations of
cooling and packaging based on data from ITRS. At 22nm this would be around
1W. Until recently technology scaling has also been accompanied by a scaling
in supply voltage. As we get to smaller technology nodes this is no longer the
case and the supply voltage is not scalling as much [13]. Figure 6(b) shows the
decrease in supply voltage with technology node. The table shows that power
consumption will be decreasing more slowly and also that frequency scaling and
voltage scaling will be less effective in terms of power reduction.

From the figure we see that at 22nm we could support the 100Mbps data rate
on SODA and still meet the power requirement. The 100Mbps solution would
require 2 SODA processors running at 10Ghz. If our projections are correct, this
is a possible future solution, because the 22nm technology node is expected to be
in production in 2011 [14] which coincides with when ITU expects 4G networks
to be deployed. This still does not leave us with any solution for the 1Gbps data

352 M. Woh et al.

rate. However, there are many features of the algorithms which we can exploit
architecturally to help us reach the goal of 1Gbps and still retain the flexibility
of a programmable SDR processor.

Multi-Processor. Most of the 4G algorithms can be divided onto multiple
processors especially for FFT, and STBC, and even LDPC. The workload can
be divided evenly among the processors. However, as we subdivide the algorithms
across processes we get an increase in data communication. Although each stage
of an algorithm is highly data parallel, stages requires data movement between
different subcarriers in the FFT and between different check nodes in the LDPC.
As we subdivide the algorithms, communication will increase, but, because the
operations of each stage are streamed, we may be able to hide the latency of this
communication under the computations itself. This would require an efficient
routing and interconnect network and also scheduling that would be able to
meet the constraints of data communication when multiple processors are used.

By dividing the workload across multiple processors we would be able to meet
the frequency target for the 4G 1Gbps workload but we would still be 3x off the
power budget. Multicore designs themselves cannot solve the problem of meeting
the 4G requirement.

Wider SIMD. Increasing the SIMD width of the processors takes advantage of
the highly data parallel nature of the algorithms. Based on historical transistor
growth, at the 22nm node we can expect to grow from a 32 wide SIMD to a
2048 wide SIMD machine. This assumes a fixed area constraint. This increase in
width would allow us to reduce the cycle count to compute any size FFT as long
as N is greater than or equal to the SIMD width. For FFT, the data movement
can be accomplished by the SSN shuffle network.

For LDPC this increase in SIMD would also be beneficial because we can
process more parity check nodes for LDPC at once. LDPC though would not
gain the same data movement advantages as FFT, because it needs to align the
check nodes and the bit nodes. However, this would not increase the amount of
data movement dramatically.

STBC would also benefit, because it would be possible to process more sub-
carriers at one time. Because there is little data movement within the STBC we
can expect gains equal to the increase in width.

Special Purpose Functional Units. Currently in SODA the operations are
RISC like in that after every instruction is simple and then writes back to the
register file. This can be costly in terms of power and latency, because, as we
stated earlier, the algorithms are streaming in nature. Writing back the data
may not be very efficient. This suggests that functional units that chain opera-
tions will be beneficial not only in performance but also power. There has been
work [15] that shows that using special functional units to streamline common
operational patterns may not only increase performance but also will be more
area and energy-efficient.

The Next Generation Challenge for Software Defined Radio 353

LDPC would also benefit from having special minimum and maximum regis-
ters embedded into the ALU. For each row operation of the parity check matrix
that is performed the result will be compared with the current state of the
register and swapped if the condition is met. In comparison with SODA, by im-
plementing this special functional unit, LDPC can be reduce in cycle count by
about 30 percent.

Memory System. Most of the algorithms like LDPC, FFT and STBC all treat
each row of the SIMD as independent. The data is loaded from memory then
permuted and stored back. There is no instance in those algorithms where two
rows have to access the same data at the same time. This suggests that the
memory system does not have to be a large global shared memory. Instead it
can be divided into banks. Banking the memory as much as possible will reduce
the cost of reading and writing data into a large global memory. Banking will
allow us to reduce the size of each memory, increase the speed, and lower power
of the memory system. In algorithms like LDPC, which may need block sizes
that are larger than currently used, we would be able to efficiently scale the size
of the memories too.

Algorithms would also benefit from a smarter memory systems that support
flexible gather/scatter accesses. Currently many cycles are wasted in LDPC
aligning the check nodes and bit nodes. V-BLAST would also benefit, because
the algorithm has to read and write back data in changing orders.

5 Conclusion

The power/performance requirements for 4G presents a significant challenge
for computer architects, especially if some degree of programmability is to be
retained. Currently technology is not capable of processing a 4G system on a
single processor. In this paper we have analyzed a 4G system in the context
of the SODA architecture and have shown that 3G solutions cannot meet the
performance of 4G even if technology scaling is taken into account. We have
presented architectural options that can improve the performance and reduce
the power consumption of 4G solutions. We have argued that one solution to
the power/performance challenge for 4G will increase the number of cores, and
that each core will include a very wide SIMD processor with special purpose
function units and highly banked memories.

References

1. Lee, H., Lin, Y., Harel, Y., Woh, M., Mahlke, S.A., Mudge, T.N., Flautner, K.:
Software defined radio - a high performance embedded challenge. In: Conte, T.,
Navarro, N., Hwu, W.-m.W., Valero, M., Ungerer, T. (eds.) HiPEAC 2005. LNCS,
vol. 3793, pp. 6–26. Springer, Heidelberg (2005)

2. Schulte, M., Glossner, J., Jinturkar, S., Moudgill, M., Mamidi, S., Vassiliadis, S.:
A low-power multithreaded processor for software defined radio. J. VLSI Signal
Process. Syst. 43, 143–159 (2006)

354 M. Woh et al.

3. Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S.A., Mudge, T.N., Chakrabarti,
C., Flautner, K.: Soda: A low-power architecture for software radio. In: ISCA, pp.
89–101. IEEE Computer Society Press, Los Alamitos (2006)

4. Alamouti, S.M.: A simple transmit diversity technique for wireless communications.
IEEE J. on Select Areas in Communications 16, 1451–1458 (1998)

5. Guo, Z., Nilsson, P.: A vlsi architecture of the square root algorithm for v-blast
detection. J. VLSI Signal Process. Syst. 44, 219–230 (2006)

6. Lin, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Reid, A., Flautner, K.: Design
and implementation of turbo decoders for software defined radio. In: SiPS, IEEE
Computer Society Press, Los Alamitos (2006)

7. Lee, S.-J., Shanbhag, N.R., Singer, A.C.: A low-power vlsi architecture for turbo
decoding. In: ISLPED ’03. Proceedings of the 2003 international symposium on
Low power electronics and design, pp. 366–371. ACM Press, New York (2003)

8. Zhu, Y., Chakrabarti, C.: Architecture-aware ldpc code design for software defined
radio. IEEE Workshop on Signal Processing Systems (2006)

9. http://www.ieee802.org/16/pubs/80216e.html
10. Robelly, J.P., Seidel, H., Chen, K.C., Fettweis, G.: Energy efficiency vs. pro-

grammability trade-off: architectures and design principles. In: DATE ’06. Pro-
ceedings of the conference on Design, automation and test in Europe, Leuven,
Belgium. European Design and Automation Association, vol. 3001, pp. 587–592
(2006)

11. http://public.itrs.net
12. Rodriguez, S., Jacob, B.: Energy/power breakdown of pipelined nanometer caches

(90nm/65nm/45nm/32nm). In: ISLPED ’06. Proceedings of the 2006 international
symposium on Low power electronics and design, pp. 25–30. ACM Press, New York
(2006)

13. McPherson, J.W.: Reliability challenges for 45nm and beyond. In: DAC ’06. Pro-
ceedings of the 43rd annual conference on Design automation, pp. 176–181. ACM
Press, New York (2006)

14. Chau, R., Doyle, B., Doczy, M., Datta, S., Hareland, S., Jin, B., Kavalieros, J.,
Metz, M.: Silicon nano-transistors and breaking the 10 nm physical gate length
barrier. In: Device Research Conference, pp. 23–25 (2003)

15. Karnik, T., Borkar, S., De, V.: Sub-90nm technologies: challenges and opportu-
nities for cad. In: ICCAD ’02. Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pp. 203–206. ACM Press, New York (2002)

http://www.ieee802.org/16/pubs/80216e.html
http://public.itrs.net

	The Next Generation Challenge for Software Defined Radio
	Introduction
	4G Physical Layer
	OFDMA
	MIMO
	Channel Encoder/Decoder

	Computational Analysis
	Baseline Architecture
	Workload Profile
	Computational Patterns

	Architectural Implications
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

